Ph 1 какая среда. Водородный показатель среды растворов – pH

Вода – очень слабый электролит, в незначительной степени диссоциирует, образуя ионы водорода (H +) и гидроксид-ионы (OH –),

Этому процессу соответствует константа диссоциации:

.

Поскольку степень диссоциации воды очень мала, то равновесная концентрация недиссоциированных молекул воды с достаточной точностью равна общей концентрации воды, т. е. 1000/18 = 5,5 моль/дм 3 .
В разбавленных водных растворах концентрация воды мало изменяется и ее можно считать постоянной величиной. Тогда выражение константы диссоциации воды преобразуется следующим образом:

.

Константа , равная произведению концентрации ионов H + и OH – , представляет собой постоянную величину и называется ионным произведением воды . В чистой воде при 25 ºС концентрации ионов водорода и гидроксид-ионов равны и составляют

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами.

Так, при 25 ºС

– нейтральный раствор;

> – кислый раствор;

< – щелочной раствор.

Вместо концентраций ионов H + и OH – удобнее пользоваться их десятичными логарифмами, взятыми с обратным знаком; обозначаются символами pH и pOH:

;

.

Десятичный логарифм концентрации ионов водорода, взятый с обратным знаком, называется водородным показателем (pH).

Ионы воды в некоторых случаях могут взаимодействовать с ионами растворенного вещества, что приводит к существенному изменению состава раствора и его pH.

Таблица 2

Формулы расчета водородного показателя (рН)

* Значения констант диссоциации (K ) указаны в приложении 3.

pK = – lgK ;

HAn – кислота; KtOH – основание; KtAn – соль.

При вычислениях pH водных растворов необходимо:

1. Определить природу веществ, входящих в состав растворов, и подобрать формулу для расчета pH (таблица 2).

2. Если в растворе присутствует слабая кислота или основание, найти по справочнику или в приложении 3 pK этого соединения.

3. Определить состав и концентрацию раствора (С ).

4. Подставить численные значения молярной концентрации (С ) и рK
в расчетную формулу и вычислить рН раствора.

В таблице 2 приведены формулы расчета pH в растворах сильных и слабых кислот и оснований, буферных растворах и растворах солей, подвергающихся гидролизу.

Если в растворе присутствует только сильная кислота (HАn), которая является сильным электролитом и практически полностью диссоциирует на ионы , то водородный показатель (pH) будет зависеть от концентрации ионов водорода (H +) в данной кислоте и определяться по формуле (1).

Если в растворе присутствует только сильное основание , которое является сильным электролитом и практически полностью диссоциирует на ионы , то водородный показатель (pH) будет зависеть от концентрации гидроксид-ионов (OH –) в растворе и определяться по формуле (2).

Если в растворе присутствует только слабая кислота или только слабое основание, то pH таких растворов определяется по формулам (3), (4).

Если в растворе присутствует смесь сильной и слабой кислот, то ионизация слабой кислоты практически подавлена сильной кислотой, поэтому при расчете рН в таких растворах пренебрегают присутствием слабых кислот и используют формулу расчета, применяемую для сильных кислот, (1). Такие же рассуждения верны и для случая, когда в растворе присутствует смесь сильного и слабого оснований. Вычисления рН ведут по формуле (2).

Если в растворе присутствует смесь сильных кислот или сильных оснований, то вычисления рН ведут по формулам расчета рН для сильных кислот (1) или оснований (2), предварительно просуммировав концентрации компонентов.

Если же раствор содержит сильную кислоту и ее соль или сильное основание и его соль, то рН зависит только от концентрации сильной кислоты или сильного основания и определяется по формулам (1) или (2).

Если в растворе присутствует слабая кислота и ее соль (например, CH 3 COOH и CH 3 COONa; HCN и KCN) или слабое основание и его соль (например, NH 4 OH и NH 4 Cl), то эта смесь представляет собой буферный раствор и рН определяется по формулам (5), (6).

Если в растворе присутствует соль, образованная сильной кислотой и слабым основанием (гидролизуется по катиону) или слабой кислотой и сильным основанием (гидролизуется по аниону), слабой кислотой и слабым основанием (гидролизуется по катиону и аниону), то эти соли, подвергаясь гидролизу, изменяют величину рН, а расчет ведется по формулам (7), (8), (9).

Пример 1. Вычислите pH водного раствора соли NH 4 Br с концентрацией .

Решение. 1. В водном растворе соль, образованная слабым основанием и сильной кислотой, гидролизуется по катиону согласно уравнениям:

В водном растворе в избытке остаются ионы водорода (Н +).

2. Для вычисления pH воспользуемся формулой расчета водородного показателя для соли, подвергающейся гидролизу по катиону:

.

Константа диссоциации слабого основания
K = 4,74).

3. Подставим численные значения в формулу и вычислим водородный показатель:

.

Пример 2. Вычислите pH водного раствора, состоящего из смеси гидроксида натрия, моль/дм 3 и гидроксида калия, моль/дм 3 .

Решение. 1. Гидроксид натрия (NaOH) и гидроксид калия (KOH) относятся к сильным основаниям, которые практически полностью диссоциируют в водных растворах на катионы металла и гидроксид-ионы:

2. Водородный показатель будет определяться суммой гидроксид-ионов. Для этого суммируем концентрации щелочей:

3. Вычисленную концентрацию подставим в формулу (2) для вычисления pH сильных оснований:

Пример 3. Рассчитайте pH буферного раствора, состоящего из 0,10 М раствора муравьиной кислоты и 0,10 М раствора формиата натрия, разбавленного в 10 раз.

Решение. 1. Муравьиная кислота HCOOH – слабая кислота, в водном растворе лишь частично диссоциирует на ионы, в приложении 3 находим муравьиной кислоты :

2. Формиат натрия HCOONa – соль, образованная слабой кислотой и сильным основанием; гидролизуется по аниону, в растворе появляется избыток гидроксид-ионов :

3. Для вычисления pH воспользуемся формулой для вычисления водородных показателей буферных растворов, образованных слабой кислотой и ее солью, по формуле (5)

Подставим численные значения в формулу и получим

4. Водородный показатель буферных растворов при разбавлении не изменяется. Если раствор разбавить в 10 раз, его рН сохранится равным 3,76.

Пример 4. Вычислите водородный показатель раствора уксусной кислоты концентрации 0,01 М, степень диссоциации которой равна 4,2 %.

Решение. Уксусная кислота относится к слабым электролитам.

В растворе слабой кислоты концентрация ионов меньше концентрации самой кислоты и определяется как a C.

Для вычисления рН воспользуемся формулой (3):

Пример 5. К 80 см 3 0,1 н раствора СН 3 СООН прибавили 20 см 3 0,2
н раствора CH 3 COONa. Рассчитайте рН полученного раствора, если K (СН 3 СООН) = 1,75∙10 –5 .

Решение. 1. Если в растворе находятся слабая кислота (СН 3 СООН) и ее соль (CH 3 COONa), то это буферный раствор. Рассчитываем рН буферного раствора данного состава по формуле (5):

2. Объем раствора, полученного после сливания исходных растворов, равен 80 + 20 = 100 см 3 , отсюда концентрации кислоты и соли будут равны:

3. Полученные значения концентраций кислоты и соли подставим
в формулу

.

Пример 6. К 200 см 3 0,1 н раствора соляной кислоты добавили 200 см 3 0,2 н раствора гидроксида калия, определить рН полученного раствора.

Решение. 1. Между соляной кислотой (HCl) и гидроксидом калия (KOH) протекает реакция нейтрализации, в результате которой образуется хлорид калия (KCl) и вода:

HCl + KOH → KCl + H 2 O.

2. Определим концентрацию кислоты и основания:

По реакции HCl и KOH реагируют как 1: 1, поэтому в таком растворе в избытке остается KOH с концентрацией 0,10 – 0,05 = 0,05 моль/дм 3 . Так как соль KCl гидролизу не подвергается и не изменяет рН воды, то на величину рН окажет влияние находящийся в избытке в этом растворе гидроксид калия. KOH является сильным электролитом, для расчета рН используем формулу (2):

135. Сколько граммов гидроксида калия содержится в 10 дм 3 раствора, водородный показатель которого равен 11?

136. Водородный показатель (рН) одного раствора равен 2, а другого – 6. В 1 дм 3 какого раствора концентрация ионов водорода больше и во сколько раз?

137. Укажите реакцию среды и найдите концентрацию и ионов в растворах, для которых рН равен: а) 1,6; б) 10,5.

138. Вычислите рН растворов, в которых концентрация равна (моль/дм 3): а) 2,0∙10 –7 ; б) 8,1∙10 –3 ; в) 2,7∙10 –10 .

139. Вычислите рН растворов, в которых концентрация ионов равна (моль/дм 3): a) 4,6∙10 –4 ; б) 8,1∙10 –6 ; в) 9,3∙10 –9 .

140. Вычислите молярную концентрацию одноосновной кислоты (НАn) в растворе, если: а) рН = 4, α = 0,01; б) рН = 3, α = 1 %; в) pH = 6,
α = 0,001.

141. Вычислите рН 0,01 н раствора уксусной кислоты, в котором степень диссоциации кислоты равна 0,042.

142. Вычислите рН следующих растворов слабых электролитов:
а) 0,02 М NH 4 OH; б) 0,1 М HCN; в) 0,05 н HCOOH; г) 0,01 М CH 3 COOH.

143. Чему равна концентрация раствора уксусной кислоты, рН которой равен 5,2?

144. Определите молярную концентрацию раствора муравьиной кислоты (HCOOH), рН которого 3,2 (K НСООН = 1,76∙10 –4).

145. Найдите степень диссоциации (%) и 0,1 М раствора СН 3 СООН, если константа диссоциации уксусной кислоты равна 1,75∙10 –5 .

146. Вычислите и рН 0,01 М и 0,05 н растворов H 2 SO 4 .

147. Вычислите и рН раствора H 2 SO 4 с массовой долей кислоты 0,5 % (ρ = 1,00 г/см 3).

148. Вычислите pH раствора гидроксида калия, если в 2 дм 3 раствора содержится 1,12 г KОН.

149. Вычислите и pH 0,5 М раствора гидроксида аммония. = 1,76∙10 –5 .

150. Вычислите рН раствора, полученного при смешивании 500 см 3 0,02 М CH 3 COOH с равным объемом 0,2 М CH 3 COOK.

151. Определите pH буферной смеси, содержащей равные объемы растворов NH 4 OH и NH 4 Cl с массовыми долями 5,0 %.

152. Вычислите, в каком соотношении надо смешать ацетат натрия и уксусную кислоту, чтобы получить буферный раствор с pH = 5.

153. В каком водном растворе степень диссоциации наибольшая: а) 0,1 М СН 3 СООН; б) 0,1 М НСООН; в) 0,1 М HCN?

154. Выведите формулу для расчета рН: а) ацетатной буферной смеси; б) аммиачной буферной смеси.

155. Вычислите молярную концентрацию раствора HCOOH, имеющего pH = 3.

156. Как изменится рН, если вдвое разбавить водой: а) 0,2 М раствор HCl; б) 0,2 М раствор СН 3 СООН; в) раствор, содержащий 0,1 М СН 3 СООН и 0,1 М СН 3 СООNa?

157*. 0,1 н раствор уксусной кислоты нейтрализовали 0,1 н раствором гидроксида натрия на 30 % своей первоначальной концентрации. Определите рН полученного раствора.

158*. К 300 см 3 0,2 М раствора муравьиной кислоты (K = 1,8∙10 –4) прибавили 50 см 3 0,4 М раствора NaOH. Измерили рН и затем раствор разбавили в 10 раз. Рассчитайте рН разбавленного раствора.

159*. К 500 см 3 0,2 М раствора уксусной кислоты (K = 1,8∙10 –5) прибавили 100 см 3 0,4 М раствора NaOH. Измерили рН и затем раствор разбавили в 10 раз. Рассчитайте рН разбавленного раствора, напишите уравнения химической реакции.

160*. Для поддержания необходимого значения рН химик приготовил раствор: к 200 см 3 0,4 М раствора муравьиной кислоты прибавил 10 см 3 0,2 % раствора KОН (p = 1 г/см 3) и полученный объем разбавил в 10 раз. С каким значением рН получен раствор? (K HCOOH = 1,8∙10 –4).

Водородный показатель – рН – это мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр.

pН = – lg

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni – сила водорода, или pondus hydrogenii – вес водорода.

Несколько меньшее распространение получила обратная pH величина – показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:

рОН = – lg

В чистой воде при 25°C концентрации ионов водорода () и гидроксид-ионов () одинаковы и составляют 10 -7 моль/л, это напрямую следует из константы автопротолиза воды К w , которую иначе называют ионным произведением воды:

К w = · =10 –14 [моль 2 /л 2 ] (при 25°C)

рН + рОН = 14

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания – наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда > говорят, что раствор является кислым, а при > – щелочным.

Определение рН

Для определения значения pH растворов широко используют несколько способов.

1) Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы – органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах – либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы (см. Таблица 1, занятие 2).

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

2) Аналитический объёмный метод – кислотно-основное титрование – также даёт точные результаты определения общей кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности – момент, когда титранта точно хватает, чтобы полностью завершить реакцию, – фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется общая кислотность раствора.

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред (Табл. 2).

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем.

3) Использование специального прибора – pH-метра – позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов, отличается удобством и высокой точностью, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

С помощью рН-метра измеряют концентрацию ионов водорода (pH) в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных систем непрерывного контроля технологических процессов, в т. ч. в агрессивных средах.

рН-метр незаменим для аппаратного мониторинга pH растворов разделения урана и плутония, когда требования к корректности показаний аппаратуры без её калибровки чрезвычайно высоки.

Прибор может использоваться в лабораториях стационарных и передвижных, в том числе полевых, а также клинико-диагностических, судебно-медицинских, научно-исследовательских, производственных, в том числе мясо-молочной и хлебопекарной промышленности.

Последнее время pH-метры также широко используются в аквариумных хозяйствах, контроля качества воды в бытовых условиях, земледелия (особенно в гидропонике), а также – для контроля диагностики состояния здоровья.

Таблица 2. Значения рН для некоторых биологических систем и других растворов

Система (раствор)

Двенадцатиперстная кишка

Желудочный сок

Кровь человека

Мышечная ткань

Панкреатический сок

Протоплазма клеток

Тонкая кишка

Морская вода

Белок куриного яйца

Апельсиновый сок

Томатный сок

Водородный показатель , pH (лат. p ondus Hydrogenii — «вес водорода», произносится «пэ аш» ) — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X , а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH .

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора , pOH , которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 - 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1 .

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 10 14 , то ясно, что при такой температуре pH + pOH = 14 .

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7 , pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH −); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH -метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1-2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор , который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH -метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH ), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН , что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный метод кислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. pH :

0,001 моль/Л HCl при 20 °C имеет pH=3 , при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73 , при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H +) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH -метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Вещество

Электролит в свинцовых аккумуляторах

Желудочный сок

Лимонный сок (5% р-р лимонной кислоты)

Пищевой уксус

Кока-кола

Яблочный сок

Кожа здорового человека

Кислотный дождь

Питьевая вода

Чистая вода при 25 °C

Морская вода

Мыло (жировое) для рук

Нашатырный спирт

Отбеливатель (хлорная известь)

Концентрированные растворы щелочей

Вспомните:

Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;

Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.

Кислотность среды

Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .

В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.

В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.

В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.

В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.

Водородный показатель

Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.

Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией

ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.

Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:



Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).

Рис. 11.2. Значение рН различных природных и искусственных растворов

Сёрен Педер Лауриц Сёренсен

Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».

Определение кислотности среды

Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.

Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:

Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН

Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный

В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.

Применение водородного показателя

Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.

Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.

Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.

Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.

В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.

Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них

Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.

ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3

Оборудование: штатив с пробирками, пипетка.

Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов

1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.

2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.

Исследование pH пищевой и косметической продукции

Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.


Ключевая идея

Контрольные вопросы

130. Наличием каких ионов в растворе обусловлена его кислотность?

131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?

132. Какой показатель количественно описывает кислотность растворов?

133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?

Задания для усвоения материала

134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?

135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?

136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?

137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .

138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?

139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);

б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?

140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?

141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.

142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;

в) 1,5 моль?

143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?

144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?

145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?

Это материал учебника



Copyright © 2024 Школа и образование.